Solving Fuzzy Differential Equationsin RungeKutta Method of Order Three

Sharmila, Josephine Mary, Maria Nancy Flora, Mahesh
PG and Research Department of Mathematics
St. Joseph's College of Arts and Science (autonomous), Cuddalore, India.

Abstract

In this paper, we study numerical method for Fuzzy differential equations by Runge-Kutta method of order three. The elementary properties of this method are given. We use the extended Runge-Kutta method of order three in order to enhance the order of accuracy of the solution. Thus we can obtain the strong Fuzzy solution.

Keywords- Fuzzy differential equations, Runge-Kutta method of order three, Trapezoidal Fuzzy number.

I. INTRODUCTION

In this paper, we have introduced and studied a new technique forgetting the solution of fuzzy initial value problem. The organized paper is asfollows: In the first three sections, we recall some concepts in fuzzy initial value problem. In sections four and five, we present Runge-Kutta method of order three and its iterative solution forsolving Fuzzy differential equations. The proposed algorithm is illustrated by anexample in the last section.

II. PRELIMINARY

A trapezoidal fuzzy number u is defined by four real numbers $O<k<\ell<m<n$ where the base of the trapezoidal is the interval $[k, \quad n]$ and itsvertices at $x=\ell, x=m$. Trapezoidal fuzzy number will be written as $u=(k, \ell, m, n)$. The membership function for the trapezoidal fuzzy number $u=(k, \ell, m, n)$ is defined as follows :

$$
u(x)=\left\{\begin{aligned}
\frac{x-k}{\ell-k}, & k \leq x \leq \ell \\
1, & \ell \leq x \leq m \\
\frac{x-n}{m-n}, & m \leq x \leq n
\end{aligned}\right.
$$

The results may be:

$$
\begin{aligned}
& \text { (1) } u>0 \quad \text { if } \quad k>0 \\
& \text { (2) } u>0 \text { if } \quad \ell>0 \\
& \text { and } \quad \begin{array}{l}
\text { (3) } u>0 \\
\text { (4) } u>0
\end{array} \quad \text { if } n>0 \\
&
\end{aligned}
$$

Let us denote R_{F} bythe class of all fuzzy subsets of R (i.e. $u: R$ $\rightarrow[0,1])$ satisfying the following properties:
(i) $\forall u \in R_{F}, u$ is normal, i.e. $\exists x_{0} \in R$ with $u\left(x_{0}\right)=1$
(ii) $\forall u \in R_{F}, \quad u \quad$ is convex fuzzy $\operatorname{set}(i . \quad$ e. $u(t x+(1-t) y) \geq \min \{u(x), u(y)\}, \forall t \in[0,1], x, y \in R)$
(iii) $\forall u \in R_{F}, u$ is upper semi continuous on R; (iv)
$\overline{\{x \in R ; u(x)>0\}}$ is compact, where \bar{A} denotes the closure of A. Then R_{F} is called the space of fuzzy numbers.

Obviously $R \subset R_{F}$. Here $R \subset R_{F}$ is understood as
$R=\left\{\chi_{\{x\}} ; x\right.$ is usual real number $\}$

We define the r-level set, $x \in R$;
$[u]_{r}=\{x \backslash u(x) \geq r\}, \quad 0 \leq r \leq 1 ;$
clearly $[u]_{0}=\{x \backslash u(x)>0\}$ is compact,
Theorem 2.1
Let $F(t, u, v)$ and $G(t, u, v)$ belong to $C^{1}\left(R_{F}\right)$ and the partial derivatives of F and G be bounded over R_{F}. Then for arbitrarily fixed $r, 0 \leq r \leq 1$, the numerical solutions of $\underline{y}\left(t_{n+1} ; r\right)$ and $y\left(t_{n+1} ; r\right)$ converge to the exact solutions $\underline{Y}(t ; r)$ and $\bar{Y}(t ; r)$ uniformly in t.

Theorem 2.2
Let $F(t, u, v)$ and $G(t, u, v)$ belong to $C^{1}\left(R_{F}\right)$ and the partial derivatives of F and G be bounded over R_{F} and $2 L h<1$. Then for arbitrarily fixed $0 \leq r \leq 1$, the iterative numerical solutions of $\underline{y}^{(j)}\left(t_{n} ; r\right)$ and $\bar{y}^{(j)}\left(t_{n} ; r\right)$ converge to the numerical solutions $\underline{y}\left(t_{n} ; r\right)$ and $\bar{y}\left(t_{n} ; r\right)$ in $t_{0} \leq t_{n} \leq t_{N}$, when $j \rightarrow \infty$.

III. FUZZY INITIAL VALUE PROBLEM

Consider a first-order fuzzy initial value differential equation is given by

$$
\left\{\begin{array}{l}
y^{\prime}(t)=f(t, y(t)), \quad t \in\left[t_{0}, T\right] \tag{3}
\end{array}\right.
$$

$y\left(t_{0}\right)=y_{0}$

We denote the fuzzy function y by $y=[\underline{y}, \bar{y}]$. It means that the r-level set of $\mathrm{y}(t)$ for $t \in\left[t_{0}, T\right]$ is

$$
[y(t)]_{r}=[\underline{y}(t ; r), \bar{y}(t ; r)]
$$

$\left[y\left(t_{n}\right)\right]_{r}=\left[\underline{y}\left(t_{0} ; r\right), \bar{y}\left(t_{0} ; r\right)\right], r \in(0,1]$
we write $f(t, y)=[\underline{f}(t, y), \bar{f}(t, y)]$
Because of $y^{\prime}=f(t, y)$ we have

$$
\begin{aligned}
\underline{f}(t,(y(t) ; r) & =F[t, \underline{y}(t ; r), \bar{y}(t ; r)] \\
\bar{f}(t,(y(t) ; r) & =G[t, \underline{y}(t ; r), \bar{y}(t ; r)]
\end{aligned}
$$

By using the extension principle, we have the membership function
$f(t, y(t))(s)=\sup \{y(t)(\tau) \backslash s=f(t, \tau)\}, s \in R$
so fuzzy number $f(t, y(t))$. From this it follows that
$[f(t, y(t))]_{r}=[\underline{f}(t, y(t) ; r), f(t, y(t) ; r)], r \in(0,1]$
where

$$
\underline{f}(t, y(t) ; r)=\min
$$

$$
\begin{aligned}
& \left\{f(t, u) \mid u \in[y(t)]_{r}\right\} \\
& \bar{f}(t, y(t) ; r)=\max \\
& \left\{f(t, u) \mid u \in[y(t)]_{r}\right\}
\end{aligned}
$$

Definition - A function $R \rightarrow R_{F}$ is said to be fuzzy continuous function, if for an arbitrary fixed $t_{0} \in R$ and $\in>0, \delta>0$ such that

$$
\mid t-t_{0} \mathrm{k} \delta \delta \mathrm{D}\left[\mathrm{f}(\mathrm{t}), \mathrm{f}\left(\mathrm{t}_{0}\right)\right]<\epsilon
$$

Throughout this paper it is considered that fuzzy functions are continuous in metric D. Then the continuity of $f(t, y(t) ; r)$ guarantees the existence of the definition $f(t, y(t) ; r)$ for $t \in\left[t_{0}, T\right]$ and $r \in[0,1]$. Therefore, the functions G and F can be defined too.

IV. RUNGE-KUTTA METHOD OF ORDER THREE

Consider the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime}(t)=f(t, y(t)), \quad t \in\left[t_{0}, T\right] \\
y\left(t_{0}\right)=y_{0}
\end{array}\right.
$$

Assuming the following Runge-Kutta method with three slopes

$$
y\left(t_{n+1}\right)=y\left(t_{n}\right)+W_{1} K_{1}+W_{2} K_{2}+W_{3} K_{3}
$$

where
$K_{1}=h f\left(t_{n}, y\left(t_{n}\right)\right)$
$K_{2}=h f\left(t_{n}+c_{2} h, y\left(t_{n}\right)+a_{21} K_{1}\right)$
$K_{3}=h f\left(t_{n}+c_{3} h, y\left(t_{n}\right)+a_{31} K_{1}+a_{32} K_{2}\right)$
and the parameters $W_{1}, W_{2}, W_{3}, c_{2}, c_{3}, a_{21}, a_{31} \& a_{32}$ are chosen to make y_{n+1} closer to $y\left(t_{n+1}\right)$. There are eight parameters to be determined. Now, Taylor's series expansion about t_{n} gives

$$
\begin{aligned}
& y\left(t_{n+1}\right)=y\left(t_{n}\right)+\frac{h}{1!} y^{\prime}\left(t_{n}\right)+\frac{h^{2}}{2!} y^{\prime \prime}\left(t_{n}\right)+\frac{h^{3}}{3!} y^{\prime \prime \prime}\left(t_{n}\right)+\ldots= \\
& y\left(t_{n}\right)+\frac{h}{1!} f\left(t_{n}, y\left(t_{n}\right)\right)+\frac{\stackrel{(4}{2}_{2}^{2!}}{2!}\left[f_{t}+f f_{y}\right]_{t_{n}}+\ldots . \\
& K_{1}=h f_{n}
\end{aligned}
$$

$$
\begin{align*}
& \left.\left.+a_{21}^{2} f^{2} f_{y y}\right]_{t n}+\ldots . .\right\} \tag{7}\\
& K_{\text {a }}=h
\end{align*}
$$

$+h^{\wedge} 3 / 3!\left[\left(3\left(/ c_{-} 2 j^{a_{2}} f_{-} t t+2 c_{-} 2 a_{-} 21\right.\right.\right.$ /ff d _ty +
/2.21f $\left.{ }^{\wedge} 2 f^{\wedge} 2 f_{-} y y\right) a_{-} 32 f_{-} y \quad @+\left(6 c_{-} 3 a_{-} 32 f_{-} t y+\right.$ $\left.6 a_{-} 31 f_{-} n a_{-} 32 f_{-} y y\right)\left(c_{-} 2 f_{-} t+a_{-} 21\right.$ fff $\left.\left.\left.y\right)\right)\right]_{-}\left(t_{-} n\right)$
$+\ldots$ \}
Substituting the values of $K_{1}, K_{2} \& K_{1}$, we get

$$
y\left(t_{m+1}\right)=p\left(t_{n}\right)+\left[W_{1}+W_{2}+W_{1}\right] h_{n}+h^{2}\left[W_{2}\left(c_{2} f+a_{n} f f_{p}\right)+W_{1}\left(c_{2} f t+\left(a_{n 1}+a_{n 2}\right) f_{n} f_{p}\right]_{t_{n}}\right.
$$

$\left.\left.\left.+2 a_{-} 31 a_{-} 32\right)[\mathrm{fn}](2 \mathrm{fyy})\right)\right](\mathrm{I}|\mathrm{tt}| \mathrm{n})$

$+\ldots$

Comparing the coefficients $(10) h h^{2} \& h^{3}$, we obtain

$$
a_{21}=c_{2}, \quad a_{31}+a_{32}=c_{2}, \quad W_{1}+W_{2}+W_{2}=1
$$

$$
\begin{equation*}
c_{2} W_{2}+c_{a} W_{a}=\frac{1}{2}, \quad c_{2}^{2} W_{2}\left(\mathrm{H}_{1} 9^{2} W_{a}=\frac{1}{a}, \quad c_{2} a_{32} W_{a}=\frac{1}{6}\right. \tag{14}
\end{equation*}
$$

Then we immediately obtain from the fourth and fifth equations, that $c_{2}=\frac{2}{3}$. Similarly the values of the remaining parameters are obtained.

When $c_{2}=c_{3}$, we get $c_{2}=\frac{2}{3}$ and $\alpha_{21}=\frac{2}{3}$. We get the values of the other parameters as $a_{21}=0, a_{32}=\frac{2}{a}, W_{1}=\frac{2}{g}, W_{2}=\frac{a}{g} \& W_{3}=\frac{a}{8}$.

Runge-Kutta method is obtained as

$$
y\left(t_{n+1}\right)=y\left(t_{n}\right)+\frac{1}{8}\left[2 K_{1}+3 K_{2}+3 K_{1}\right]
$$

Where
$K_{1}=h f\left(t_{n}, y\left(t_{n}\right)\right)$
$K_{2}=h f\left(t_{n}+\frac{2 h}{3}, y\left(t_{n}\right)+\frac{2}{3} K_{1}\right)$
$K_{a}=h f\left(t_{n}+\frac{2 h}{3}, y\left(t_{n}\right)+\frac{2}{3} K_{2}\right)$
V. RUNGE-KUTTA METHOD OF ORDER THREE FOR SOLVING FUZZY DIFFERENTIAL EQUATIONS

Let $Y=[\underline{Y}, \bar{Y}]$ be the exact solution and $y=[\underline{y}, \bar{y}]$ be the approximated solution of the fuzzy initial value problem .

Let
$[Y(t)]_{r}=[\underline{Y}(t ; r), \bar{Y}(t ; r)],[y(t)]_{r}=[\underline{y}(t ; r), \bar{y}(t ; r)]$ Throughout this argument, the value of r is fixed. Then the exact and approximated solution at t_{n} are respectively denoted by
$\left[Y\left(t_{n}\right)\right]_{r}=\left[\underline{Y}\left(t_{n} ; r\right), \bar{Y}\left(t_{n} ; r\right)\right]$,
$\left[y\left(t_{n}\right)\right]_{r}=\left[\underline{y}\left(t_{n} ; r\right), \bar{y}\left(t_{n} ; r\right)\right](0 \leq n \leq N)$.
The grid points at which the solution is calculated are $h=\frac{T-t_{0}}{N}, t_{i}=t_{0}+i h, 0 \leq i \leq N$.
Then we obtain,
$\underline{Y}\left(t_{n+1} ; r\right)=\underline{Y}\left(t_{n} ; r\right)+\frac{1}{8}\left[2 K_{1}+3 K_{2}+3 K_{3}\right]$,
where $\quad K_{1}=h F\left[t_{n}, \underline{Y}\left(t_{n} ; r\right), \bar{Y}\left(t_{n} ; r\right)\right]$
$K_{2}=h F\left[t_{n}+\frac{2 h}{3}, \underline{Y}\left(t_{n} ; r\right)+\frac{2}{3} K_{1}, \bar{Y}\left(t_{n} ; r\right)+\frac{2}{3} K_{1}\right]$
$K_{3}=h F\left[t_{n}+\frac{2 h}{3}, \underline{Y}\left(t_{n} ; r\right)+\frac{2}{3} K_{2}, \bar{Y}\left(t_{n} ; r\right)+\frac{2}{3} K_{2}\right]$ and
$\bar{Y}\left(t_{n+1} ; r\right)=\bar{Y}\left(t_{n} ; r\right)+\frac{1}{8}\left[2 K_{1}+3 K_{2}+3 K_{3}\right]$,
$K_{1}=h G\left[t_{n}, \underline{Y}\left(t_{n} ; r\right), \bar{Y}\left(t_{n} ; r\right)\right]$
$K_{2}=h G\left[t_{n},+\frac{2 h}{3}, \underline{Y}\left(t_{n} ; r\right)+\frac{2}{3} K_{1}, \bar{Y}\left(t_{n} ; r\right)+\frac{2}{3} K_{1}\right]$
$K_{3}=h G\left[t_{n},+\frac{2 h}{3}, \underline{Y}\left(t_{n} ; r\right)+\frac{2}{3} K_{2}, \bar{Y}\left(t_{n} ; r\right)+\frac{2}{3} K_{2}\right]$

Also we have
$\underline{y}\left(t_{n+1} ; r\right)=\underline{y}\left(t_{n} ; r\right)+\frac{1}{8}\left[2 K_{1}+3 K_{2}+3 K_{3}\right]$
where
$K_{2}=h F\left[t_{n},+\frac{2 h}{3}, \underline{y}\left(t_{n} ; r\right)+\frac{2}{3} K_{1}, \bar{y}\left(t_{n} ; r\right)+\frac{2}{3} K_{1}\right]$
$K_{3}=h F\left[t_{n},+\frac{2 h}{3}, \underline{y}\left(t_{n} ; r\right)+\frac{2}{3} K_{2}, \bar{y}\left(t_{n} ; r\right)+\frac{2}{3} K_{2}\right]$
and
$\bar{y}\left(t_{n+1} ; r\right)=\bar{y}\left(t_{n} ; r\right)+\frac{1}{8}\left[2 K_{1}+3 K_{2}+3 K_{3}\right]$, where
$K_{1}=h G\left[t_{n}, \underline{y}\left(t_{n} ; r\right), \bar{y}\left(t_{n} ; r\right)\right]$
$K_{2}=h G\left[t_{n},+\frac{2 h}{3}, \underline{y}\left(t_{n} ; r\right)+\frac{2}{3} K_{1}, \bar{y}\left(t_{n} ; r\right)+\frac{2}{3} K_{1}\right]$
$K_{3}=h G\left[t_{n},+\frac{2 h}{3}, \underline{y}\left(t_{n} ; r\right)+\frac{2}{3} K_{2}, \bar{y}\left(t_{n} ; r\right)+\frac{2}{3} K_{2}\right]$
Clearly, $\underline{\underline{y}}(t ; r)$ and $\overline{\mathcal{Y}}(t ; r)$ converge to $\underline{Y}(t ; r)$ and $\bar{Y}(t ; r)$ respectivelywhen ever $h \rightarrow 0$

VI. NUMERICAL RESULTS

In this section, the exact solution and approximated solution are obtained byEuler's method and Runge-Kutta method of order three.

Example
Consider the initial value problem

$$
\left\{\begin{array}{l}
\mathrm{y}^{\prime}(t)=f(t), \\
\mathrm{y}(0)=(0.75+0.25 \mathrm{r}, 1.125-0.125 \mathrm{r})
\end{array}\right.
$$

The exact solution at $\mathrm{t}=1$ is given by

$$
\mathrm{Y}(1 ; \mathrm{r})=[(0.75+0.125 \mathrm{r}) \mathrm{e},(1.125-0.125 \mathrm{r}) \mathrm{e}],
$$

$0 \leq \mathrm{r} \leq 1$
Using iterative solution of Runge-Kutta method of order three, we have
$\underline{y}(0 ; r)=0.75+0.25 r_{x}$
$\bar{y}(0 ; r)=1.125-0.125 r$
And by
$y^{(0)}\left(t_{i+1^{p}} r\right)=\underline{y}\left(t_{i} \cdot r\right)+h y\left(t_{i p} r\right)$
$\bar{y}^{(0)}\left(t_{i+1^{1}} r\right)=\bar{y}\left(t_{i} p r\right)+h y\left(t_{i p} r\right)$
Where $\mathrm{i}=0,1,2, \ldots \mathrm{~N}-1$ and $\mathrm{h}=\frac{1}{\mathrm{~N}}$. Now, using these equations as an initial guess for following iterative solutions respectively,

$$
\begin{aligned}
& y^{j}\left(t_{i+1} r r\right)=y\left(t_{1} r\right)+\frac{1}{8}\left[2 K_{1}+3 K_{2}+3 K_{1}\right]_{x} \\
& K_{1}=h y\left(t_{i} ; r\right)
\end{aligned}
$$

$K_{2}=h\left(y\left(t_{i} ; r\right)+\frac{2}{3} K_{1}\right)$
$K_{a}=h\left(\underline{y}\left(t_{i} ; r\right)+\frac{2}{3} K_{2}\right)$
And
$\bar{y}^{j}\left(t_{i+1^{i}} r\right)=\bar{y}\left(t_{i} ; r\right)+\frac{1}{8}\left[2 K_{1}+3 K_{2}+3 K_{a^{2}}\right]_{x}$
$K_{1}=h \bar{y}\left(t_{i f} ; r\right)$
$K_{2}=h\left(\bar{y}\left(t_{i} ; v\right)+\frac{2}{3} K_{1}\right)$
$K_{a}=h\left(\bar{y}\left(t_{i} ; r\right)+\frac{2}{3} K_{2}\right)$
And $\mathrm{j}=1,2,3$. Thus, we have $\underline{y}^{\left(t_{i} ; r\right)}=\underline{y}^{(\mathrm{d})}\left(\mathrm{t}_{\mathrm{i}} ; \vec{r}\right)$ and
$\bar{Y}\left(t_{i f} ; r\right)=\bar{y}^{(5)}\left(t_{i} ; r\right)$, for $i=1 \ldots . N$
Therefore, $\underline{Y}(1 ; r) \& \underline{y}^{(1)}(1 ; r)$ and $\bar{Y}\left(1_{s} r\right) \approx \bar{y}^{(1)}(1 ; r)$ are obtained.

By minimizing the step size h, the solution by exact method and Runge- Kutta method almost coincides.

Table 1: Exact solution

r	\underline{Y}	\bar{Y}
0	2.038711371	3.058067057
0.1	2.106668417	3.024088534
0.2	2.174625463	2.990110011
0.3	2.242582508	2.956131488
0.4	2.310539554	2.922152966
0.5	2.378496600	2.888174443
0.6	2.446453646	2.85419592
0.7	2.514410691	2.820217397
0.8	2.582367737	2.786238874
0.9	2.650324783	2.752260351
1	2.718281828	2.718281828

Table 2: Approximated solution

r	\underline{Y}	$\overline{\bar{y}}$
0	2.038633	3.057949
0.1	2.106587	3.023972
0.2	2.174542	2.989995
0.3	2.242496	2.956018
0.	2.310451	2.922041
0.5	2.378405	2.888063
0.6	2.446360	2.854086
0.7	2.514314	2.820109
0.8	2.582260	2.786132
0.9	2.650223	2.752154
1	2.718177	2.718177

VII. CONCLUSION

In this paper, numerical method for solving Fuzzy differential equations is considered. A scheme based on thirdorder Runge Kuttamethod to approximate the solution of fuzzy initial value

International Journal of Computing Algorithm Volume: 03 Issue: 03 December 2014 Pages: 198-201

ISSN: 2278-2397
problem has been formulated. Numerical example shows that the exact and approximate solutions converge when $\mathrm{h} \rightarrow 0$.

REFERENCES

[1]. S.L. chang and L.A. Zadeh, on Fuzzy Mapping and control, IEEE Trans. Systems Man Cybernet., 2 (1972) 30-34
[2]. M.L. Puri and D.A. Ralescu, Differentials of Fuzzy Functions, J.Math. Anal.,91(1983) 321-325
[3]. J.J. Buckley and E. Eslami and T. Feuring, Fuzzy Mathematics in Economics and Engineering, Physica - Verlag, Heidelberg, Germany. 2002
[4]. R. Goetschel and W. Voxman, Elementary Calculus, Fuzzy sets and systems. 18 (1986) 31-43
[5]. J.J. Buckely and E. Eslami, Introduction to Fuzzy Logic and Fuzzy Sets, Physica - Verlag, Heidelberg, Germany. 2001
[6]. O. Kaleva, The Cauchy Problem for Fuzzy Differential Equations, Fuzzy sets and systems, 35 (1990) 389-396.
[7]. Duraisamy .C and Usha .B, Numerical Solution of Fuzzy Differential Equations by Runge-kutta Method, National conference on scientific computing and Applied Mathematics.
[8]. Duraisamy .C and Usha .B, Numerical Solution of Fuzzy Differential Equations by Taylor method, International journal of Mathematical Archive Vol.2, 2011.

